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Neutrinos are special:

1 They are lighter than any other massive particle we know of

2 They retain their quantum nature over long distances

3 They are notoriously anti-social

4 (We believe) they reach higher energies than anything else

Let’s talk energy scales...
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5 Unlike gamma rays and cosmic rays, neutrinos have flavor
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Next ν-Nobel for high-energy ν’s?
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High-energy astrophysical neutrinos: they exist!

The era of neutrino astronomy has begun!

– IceCube has reported 54 events with 30 TeV – 2 PeV in 4 years

Diffuse per-flavor astrophysical flux [ICECUBE 2015]:

Φν =
(

6.7+1.1
−1.2 · 10−18

)( E
100 TeV

)−(2.5±0.09)

GeV−1 cm−2 s−1 sr−1

ICECUBE, PRL 111, 021103 (2013)
ICECUBE, Science 342, 1242856 (2013)
ICECUBE, PRL 113, 101101 (2014)
J ICECUBE, ApJ 809, 98 (2015)
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High-energy astrophysical neutrinos: they exist!

The era of neutrino astronomy has begun!

– IceCube has reported 54 events with 30 TeV – 2 PeV in 4 years

Arrival directions compatible with an isotropic distribution –

– no association with sources found yet

+: shower
×: muon track

ICECUBE, PRL 111, 021103 (2013)
ICECUBE, Science 342, 1242856 (2013)
ICECUBE, PRL 113, 101101 (2014)

J O. BOTNER, IPA 2015
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What we know / don’t know

What we know
I compatible with isotropy

I power-law ∝ E−2.5

I not coincident with transient
sources (e.g., GRBs)

I not correlated with known
sources

I flavor composition:
compatible with equal
proportion of νe, νµ, ντ

I also: no prompt atmospheric
neutrinos

What we don’t know
I what are the sources?

I what is the production
mechanism?

I is there a cut-off at 2 PeV?

I what is the Galactic
contribution, if any?

I what is the precise relation to
UHE cosmic rays?

I is there new physics?

I what is the precise flavor
composition of the flux?

. . . but we have good ideas on all
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Flavor composition of neutrinos: an open question

Arguably the second most important question to answer is:

What is the proportion of νe, νµ, ντ in the diffuse flux?

Knowing this can reveal two important pieces of information:

I the physical conditions at the neutrino sources; and

I whether there is new physics, and of what kind

So it will pay off to explore what to expect from theory

[BARENBOIM, QUIGG, PRD 67, 073024 (2003)]
[WINTER, PRD 88, 083007 (2013)]
[MENA, PALOMARES, VINCENT, PRL 113, 091103 (2014)]
[PALOMARES, VINCENT, MENA, PRD 91, 103008 (2015)]
[PALLADINO, PAGLIAROLI, VILLANTE, VISSANI, PRL 114, 171101 (2015)]
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Mapping the theoretical landscape – three regions

1 With standard neutrino oscillations,
only ∼ 10% of the flavor composition
space can be accessed

2 With new physics that affects the
incoherent mix of mass eigenstates
(e.g., ν decay), still only ∼ 25%

3 A broader class of new physics is
required to access the rest of the
flavor space (e.g., CPT violation)
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HE particles from astrophysical sources

Relativistically-expanding blobs of plasma containing e’s, p’s, and γ’s
collide with each other, merge, and emit HE particles (e.g., in a GRB)

the shells merge and particles are emitted

two shells collide

plasma shells propagate at different speeds

central
emitter

1

2

3
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Why do we expect UHE neutrinos?
Joint production of UHECRs, ν’s, and γ’s:

p γ → ∆+ (1232)→
{

nπ+ , BR = 1/3
pπ0 , BR = 2/3

π+ → µ+νµ → ν̄µe+νeνµ

π0 → γγ

n (escapes)→ pe−ν̄e CR

γ

ν

After propagation, with flavor mixing:

νe : νµ : ντ : p = 1 : 1 : 1 : 1
(“one νµ per cosmic ray”)

This neutron model of CR emission is now strongly disfavored
[AHLERS et al., Astropart. Phys. 35, 87 (2011)] [ICECUBE COLL., Nature 484, 351 (2012)]

But we can do better by letting the p’s escape without interacting
[BAERWALD, MB, WINTER, ApJ 768, 186 (2013)] [BAERWALD, MB, WINTER, Astropart. Phys. 62, 66 (2015)]
[MB, BAERWALD, MURASE, WINTER, Nat. Commun. 6, 6783 (2015)]

power law ∼ E−αp broken power law
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Normal vs. inverted mass hierarchy

0 10 20 30 40 50 60
θ ij [°]

NH

IH

NH

IH

NH

IH

θ12

θ23

θ13
2015

PMNS matrix U depends on θ12, θ23, θ13, δCP.

The neutrino mass hierarchy is unknown:

I Normal hierarchy (NH): ν1 is lightest

I Inverted hierarchy (IH): ν3 is lightest

Using the latest fits from GONZÁLEZ-GARCÍA et al.,
JHEP 1411, 052 (2014):

I θ12 and θ13 are well-determined

I Little NH/IH difference for θ12 and θ13

I Large error and NH/IH difference for θ23

I At 3σ, NH and IH regions are equal
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“Flavor triangle” or Dalitz/Mandelstam plot

Assumes underlying unitarity: sum of projections on each axis is 1

How to read it: follow the tilt of the tick marks, e.g.,
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Flavor content of the mass eigenstates ν1, ν2, ν3

Show the e, µ, and τ content of the νi via ternary plots:

[MB, BEACOM, WINTER, 1506.02645, PRL]

Mauricio Bustamante (CCAPP OSU) Flavor in HE astrophysical ν ’s 12



Flavor mixing in high-energy astrophysical neutrinos
Probability of (

_
)

ν α →
(
_

)

ν β transition:

P
(
_

)

ν α→
(
_

)

ν β
= δαβ−4

∑
k>j

Re (Jαβjk ) sin2

(
∆m2

kjL
4E

)
±2
∑
k>j

Im (Jαβjk ) sin

(
∆m2

kjL
2E

)

For
{

E ∼ 1 PeV
∆m2

kj ∼ 10−4 eV2 ⇒ Losc ∼ 10−10 Mpc� L = 10 Mpc− few Gpc

I Therefore, oscillations are very rapid
I They average out after only a few oscillations lengths:

sin2 (. . .)→ 1/2 , sin (. . .)→ 0

Hence, for high-energy astrophysical neutrinos:

P (
_

)

ν α→
(
_

)

ν β
=

3∑
i=1

|Uαi |2|Uβi |2 J incoherent mixture of mass eigenstates
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Flavor ratios

I Neutrino production at the source via pion decay:

pγ → ∆+(1232)→ π+n π+ → µ+νµ → e+νeν̄µνµ

I Flavor ratios at the source: (fe : fµ : fτ )S ≈ (1/3 : 2/3 : 0)

I At Earth, due to flavor mixing:

fα,⊕ =
∑
β

Pβαfβ,S =
∑
β

(
3∑

i=1

|Uαi |2|Uβi |2
)

fβ,S

(1/3 : 2/3 : 0)S
flavor mixing, NH, best-fit−−−−−−−−−−−−−−→ (0.36 : 0.32 : 0.32)⊕

I Other compositions at the source:

(0 : 1 : 0)S −→ (0.26 : 0.36 : 0.38)⊕ (“muon damped”)
(1 : 0 : 0)S −→ (0.55 : 0.26 : 0.19)⊕ (“neutron decay”)

(1/2 : 1/2 : 0)S −→ (0.40 : 0.31 : 0.29)⊕ (“charmed decays”)
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Detecting the neutrinos: IceCube

IceCube: km3 in-ice South Pole
C̆erenkov detector

I νN interactions (N = n,p)
create particle showers

I 86 strings with 5160 digital
optical modules (DOMs)

I depths between 1450 m and
2450 m
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How does IceCube see flavor?

Below Eν ∼ 5 PeV, there are two event topologies:
I Showers: generated by CC νe or ντ ; or by NC νx

I Muon tracks: generated by CC νµ

(Some muon tracks can be mis-reconstructed as showers)

At & 5 PeV (no events so far), all of the above, plus:
I Glashow resonance: CC ν̄ee interactions at 6.3 PeV
I Double bangs: CC ντ → τ → ντ

Flavor ratios must be inferred from the number of showers and tracks
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Two IceCube analyses of flavor composition
Using contained events only
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Best fit: (0 : 0.2 : 0.8)⊕

Using contained events +
throughgoing muons

Best fit: (0.49 : 0.51 : 0)⊕

I Compatible with standard source compositions
I Bounds are weak – need more data and better flavor-tagging

[ICECUBE COLL., PRL 114, 171102 (2015)]

[ICECUBE COLL., ApJ 809, 98 (2015)]
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Flavor combinations at Earth from std. mixing

Assume unconstrained flavor composition at source (with and w/o ντ ):

[MB, BEACOM, WINTER, 1506.02645, PRL]

Std. mixing can access only ∼ 10% of the possible combinations

theory: maximal µ-τ mixing

experiment: e-τ degeneracy
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Flavor combinations at Earth from std. mixing
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Selected source compositions

We can look at results for particular choices of ratios at the source:

challenging to tell them apart

(1:0:0) disfavored at 2σ

[MB, BEACOM, WINTER, 1506.02645, PRL]
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Perfect knowledge of mixing angles

In a few years, we might know all the mixing parameters except δCP:

[MB, BEACOM, WINTER, 1506.02645, PRL]
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Energy dependence of the composition at the source

Different ν production channels are accessible at different energies
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τTP13

I TP13: pγ model, target photons from co-accelerated electrons
[HÜMMER et al., Astropart. Phys. 34, 205 (2010)]

I Equivalent to different sources types contributing to the diffuse flux
I Will be difficult to resolve

[KASHTI, WAXMAN, PRL 95, 181101 (2005)] [LIPARI, LUSIGNOLI, MELONI, PRD 75, 123005 (2007)]

[MB, BEACOM, WINTER, 1506.02645, PRL]
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New physics: effect on the flavor composition

I New physics in the neutrino sector could affect the
I production; and/or
I propagation; and/or
I detection

I Detection: probe NP in the ν interaction length via the angular
dependence of the flux [MARFATIA, MCKAY, WEILER, 1502.06337]

I NP at production and propagation could modify the incoherent
mixture of ν1, ν2, ν3

I Example: neutrino decay I

[BARENBOIM, QUIGG, PRD 67, 073024 (2003)]
[BEACOM, BELL, HOOPER, PAKVASA, WEILER, PRL 90, 181301 (2003)]
[MALTONI, WINTER, JHEP 07, 064 (2008)]
[BAERWALD, MB, WINTER, JCAP 1210, 020 (2012)]
[PAGLIAROLI, PALLADINO, VISSANI, VILLANTE 1506.02624]
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Neutrino decay

I SM: ν lifetimes are > 1036 yr

I Via new-physics decay modes,
they could be shorter

I Consider two possibilities:

I NH: ν2, ν3 → ν1
I IH: ν1, ν2 → ν3

I There are experimental bounds
on the lifetime τi/mi
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Decay: effect on flavor ratios

fα,⊕
(

E0, z, κ−1
j

)
= |Uαl |2 +

∑
j 6=l

(
|Uαj |2 − |Uαl |2

)
fj,S D

(
E0, z, κ−1

j

)
I Damping due to decay:

0 < D < 1

I Complete decay:

D → 0⇒ fα,⊕ = |Uαl |2
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[MB, BEACOM, MURASE, IN PREP.]

l = 1 (NH), 3 (IH) ν1,2,3 ratios at source
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Decay: using the flavor ratios

Flavor ratios are currently more sensitive to complete decay in the NH
than in the IH:
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Decay: lifetime bounds with current IceCube data

Flavor ratios with decay in the NH (ν2, ν3 → ν1):

fα,⊕
(

E0, z, κ−1
j

)
= |Uα1|2 +

∑
j=2,3

(
|Uαj |2 − |Uα1|2

)
fj,S D

(
E0, z, κ−1

j

)
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Decay: lifetime bounds with current IceCube data
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Decay: seeing the energy dependence?

I The effect of decay shows up at low energies
I e.g., for a model of AGN cores [HÜMMER et al., Astropart. Phys. 34, 205 (2010)],

[MB, BEACOM, WINTER, 1506.02645, PRL]
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Decay: complete vs. incomplete

I Complete decay: only ν1 (ν3) reach Earth assuming NH (IH)

I Incomplete decay: incoherent mixture of ν1, ν2, ν3 reaches Earth

α( )+β( )+γ( )

or
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New physics that changes the νi mixture

Region of all linear combinations of ν1, ν2, ν3:

Complete decay in NH
disfavored at > 2σ
[MB, BEACOM, MURASE, IN PREP.]

What kind of NP lives outside?
The truly exotic kind!

This class of NP can access only ∼ 25% of the possible combinations

[MB, BEACOM, WINTER, 1506.02645, PRL]
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New physics — of the truly exotic kind

What kind of NP lives outside the blue region?

I NP that changes the values of the mixing parameters, e.g.,
I violation of Lorentz and CPT invariance

[BARENBOIM, QUIGG, PRD 67, 073024 (2003)] [MB, GAGO, PEÑA-GARAY, JHEP 1004, 005 (2010)]

I violation of equivalence principle
[GASPERINI, PRD 39, 3606 (1989)] [GLASHOW et al., PRD 56, 2433 (1997)]

I coupling to a torsion field
[DE SABBATA, GASPERINI, Nuovo. Cim. A65, 479 (1981)]

I renormalization-group running of mixing parameters
[MB, GAGO, JONES, JHEP 1105, 133 (2011)]

I active-sterile mixing [AEIKENS et al., 1410.0408]

I flavor-violating physics
I ν–ν̄ mixing (if ν, ν̄ flavor ratios are considered separately)
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[MB, GAGO, JONES, JHEP 1105, 133 (2011)]

I active-sterile mixing [AEIKENS et al., 1410.0408]

I flavor-violating physics
I ν–ν̄ mixing (if ν, ν̄ flavor ratios are considered separately)
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New physics — active-sterile mixing
Mixing with a sterile neutrino (3+1) changes the flavor ratios:

I standard parameters: θ12, θ23, θ13, δ13
I sterile parameters: θ14, θ24, θ34, δ24, δ34

Bounds from
T2K, SK,
Daya Bay

[MB, COLOMA]

Bounds are too
strong for large
deviations

PRELIMINARY
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New physics — high-energy effects (I)

Add a new-physics term to the standard oscillation Hamiltonian:

Htot = Hstd + HNP

Hstd =
1

2E
U†PMNS diag

(
0,∆m2

21,∆m2
31

)
UPMNS

HNP =
∑

n

(
E
Λn

)n

U†n diag
(
On,1,On,2,On,3

)
Un

n = 0
I coupling to a torsion field
I CPT-odd Lorentz violation

O0 . 10−23 GeV

n = 1
I equivalence principle violation
I CPT-even Lorentz violation

O1/Λ1 . 10−27 GeV

[MB, GAGO, PEÑA-GARAY, JHEP 1004, 005 (2010)]
[ARGÜELLES, KATORI, SALVADÓ, 1506.02043]
[ICECUBE COLL., PRD 82, 112003 (2010)]
[SUPER-K COLL., PRD 91, 052003 (2015)]

Experimental upper bounds from atmospheric ν’s:
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New physics — high-energy effects (II)

Truly exotic new physics is indeed able to populate the white region:
I use current bounds on On,i
I sample the unknown NP mixing angles

n = 0
(similar for n = 1)

[ARGÜELLES, KATORI, SALVADÓ
1506.02043]
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Conclusions . . . and the future

I The flavor composition is arguably the second-most interesting
unknown after the identification of sources

I The space of allowed flavor compositions is surprisingly small:
I Standard mixing: ∼ 10% of all possibilities
I νi -mixing new physics: ∼ 25% (e.g., decay)

I Only a broader class of new physics (e.g., CPT violation) can
access all compositions

I IceCube can improve the lifetime bounds in the NH (now!) and IH
(soon!) by several orders of magnitude

I More, better data on the particle-physics and astrophysics fronts
are needed (e.g., IceCube-Gen2, DUNE)
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Backup slides
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Flavor combinations from std. flavor mixing: NH vs. IH

[MB, BEACOM, WINTER, 1506.02645, PRL]
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Selected source compositions: NH vs. IH

[MB, BEACOM, WINTER, 1506.02645, PRL]
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Perfect knowledge of mixing angles: NH vs. IH

[MB, BEACOM, WINTER, 1506.02645, PRL]
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New physics: NH vs. IH

[MB, BEACOM, WINTER, 1506.02645, PRL]
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New physics: decay in the IH

[MB, BEACOM, WINTER, 1506.02645, PRL]
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Decay: cascade rate probes the IH

I Around 6.3 PeV, the Glashow resonance is accessible:

ν̄e + e→W → hadronic shower (BR = 67%)

I Three scenarios:
I Neutrinos are stable: we see the GR as a bump in the cascade rate
I Neutrinos decay in the NH: the bump is larger (|Ue1|2 is large)
I Neutrinos decay in the IH: no or almost no cascades (|Ue3|2 is tiny)
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The need for km-scale neutrino telescopes
Expected ν flux from cosmological accelerators (WAXMAN & BAHCALL 1997–1998):

E2Φν ∼ 10−8 fπ
0.2

 ε̇
[1010,1012]
CR

1044 erg Mpc−3 yr−1

 GeV cm−2 s−1 sr−1

Integrated flux above 1 PeV:

Φν (> 1 PeV) ∼
∫ ∞

1 PeV

10−8

E2 dE ∼ 10−20 cm−2 s−1 sr−1

Number of events from half of the sky (2π):

Nν ' 2π · Φν (> 1 PeV) · 1 yr · Aeff ≈
(
2.4× 10−10 cm−2)Aeff ,

where Aeff is the effective area of the detector
To detect Nν > 1 events per year, we need an area of

Aeff & 0.4 km2

Therefore, we need km-scale detectors, like IceCube
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